
Resit exam Analysis on Manifolds

June 30, 2017

This exam consists of three assignments. You get 10 points for free.

Assignment 1. (10+10+10=30 pt.)

We identify the space M(2,R) of 2× 2-matrices with R4, by associating the matrix(
x11 x12
x21 x22

)
with the point (x11, x12, x21, x22) ∈ R4.

1. Show that the set

SL(2,R) = {X ∈M(2,R) | detX = 1}

is a 3-dimensional C∞-submanifold of M(2,R). Here detX denotes the deter-

minant of X. (Hint: translate every statement in terms of subsets of R4.)

2. Show that the tangent space TE SL(2,R) at the identity matrix

E =

(
1 0

0 1

)
is equal to {A ∈ M(2,R) | TrA = 0}. Here TrA is the trace of the matrix A,

i.e., the sum of the diagonal entries of A.

3. The map f : SL(2,R) → SL(2,R) is given by f(X) = X−1. This map is di�eren-

tiable (you don't have to prove this). Show that

dEf : TE SL(2,R) → TE SL(2,R)

is given by dEf(A) = −A.

Assignment 2. (10+10+10=30 pt.)

Let X be a vector �eld on Rn, f a smooth function on Rn, and ω an n-form on Rn.
1. Prove that df∧ ιXω = X(f)ω.

Recall that ιXω is the (n−1){form given by ιXω(X1, . . . , Xn−1) = ω(X,X1, . . . , Xn−1),

and that for a vector �eld X =
∑n
i=1 aiEi (or, equivalently, X =

∑n
i=1 ai

∂
∂xi

) the func-

tion X(f) is de�ned by X(f) =
∑n
i=1 ai

∂f
∂xi

.

2. Let σ be a 1-form and let η be an (n− 1)-form on Rn. De�ne

ω : X (Rn)× · · · × X (Rn)︸ ︷︷ ︸
n times

→ C∞(Rn)

by

ω(Y1, . . . , Yn) =

n∑
i=1

(−1)i−1σ(Yi)η(Y1, . . . , Ŷi, . . . , Yn).

Prove that ω is an n-form on Rn.

3. In the notation of part 2, prove that ω = σ∧ η.

Assignment 3 on next page
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Assignment 3. (7+5+6+6+6=30 pt.)

Note: the solution of this assignment is likely to be shorter than its statement.

Let the map f :M→ Rn be a C∞-embedding of a compact orientable m-dimensional

C∞-manifold M without boundary, with m ≤ n (so, in particular, f(M) is an m-

dimensional C∞-submanifold of Rn).

1. If ω is an m-form on Rn with
∫
M f
∗ω 6= 0, then ω is not exact on Rn. Prove

this.

Let M be the two-dimensional C∞-submanifold of R4 given by

M = {(x1, x2, x3, x4) ∈ R4 | x21 + x22 = 1, x23 + x24 = 1},

and let i :M→ R4 be the inclusion map (the canonical embedding). You don't have

to prove that M is a C∞-submanifold. Let η1 and η2 be the one-forms on R4 given
by

η1 = −x2 dx1 + x1 dx2 and η2 = −x4 dx3 + x3 dx4.

2. Let p = (p1, p2, p3, p4) ∈M. Prove that a basis of TpM is {v1, v2}, where

v1 = −p2e1 + p1e2 and v2 = −p4e3 + p3e4.

As usual, ej is the j-th standard basis vector of R4.

3. Prove that i∗(η1 ∧ η2) is a nowhere-zero two-form on M.

(Hint: prove that i∗(η1 ∧ η2)p(v1, v2) 6= 0, for p ∈ M and v1, v2 ∈ TpM as in

part 2 of this assignment. Use that dip : TpM→ TpR4 is the inclusion map.)

4. Prove that the two-form η1 ∧ η2 on R4 is not exact.

(Hint: consider using part 1 and part 3.)

5. Prove that the one-forms i∗η1 and i
∗η2 on M are not exact.

(Hint: let S1 = {(u, v) ∈ R2 | u2 + v2 = 1} be the unit circle in R2, and let

f1 : S1 →M be the embedding given by f1(u, v) = (u, v, 1, 0). Apply part 1 of

this exercise to show that i∗η1 is not exact. Follow a similar approach to show

that i∗η2 is not exact.)
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Solutions

Assignment 1.

1. Let F : R4 → R be the C∞-map de�ned by F(x11, x12, x21, x22) = x11x22 − x12x21.

Then dXF has matrix
(
x22 −x21 −x12 x11

)
, which has maximal rank (namely, one)

for X ∈ SL(2,R). Therefore, SL(2,R) is a 3-dimensional C∞-submanifold of R4.

2. Use that TE SL(2,R) = kerdEF, and that X ∈ kerdEF i� x11 + x22 = 0 i� TrX = 0.

3. Let A ∈ TE SL(2,R), and let X : R → SL(2,R) be a C∞-curve with X(0) = E and

X ′(0) = A. Then dEf(A) = Y
′(0), where Y(t) = f(X(t)) = X(t)−1.

Since X(t) · Y(t) = E, we see that X ′(0) · Y(0) +X(0) · Y ′(0) = 0 (the zero matrix),

so, using X(0) = Y(0) = E we get Y ′(0) = −A.

Assignment 2. Let X =
∑n
i=1 ai

∂
∂xi

and let ω = gdx1 ∧ · · ·∧ dxn, then

ιXω = g (

n∑
i=1

(−1)i−1ai dx1 ∧ · · ·∧ d̂xi ∧ · · ·dxn ).

Since df =
∑n
i=1

∂f
∂xi

dxi, we get

df∧ ιXω = g (

n∑
j=1

∂f

∂xj
dxj)∧ (

n∑
i=1

(−1)i−1aidx1 ∧ · · ·∧ d̂xi ∧ · · ·∧ dxn )

= g (

n∑
i=1

(−1)i−1ai
∂f

∂xi
dxi ∧ dx1 ∧ · · ·∧ d̂xi ∧ · · ·∧ dxn)

= (

n∑
i=1

ai
∂f

∂xi
)gdx1 ∧ · · ·∧ dxn

= X(f)ω.

2. The map ω is multilinear over C∞(Rn). To see that it is antisymmetric, let us

swap Y1 and Y2. Note that

ω(Y1, Y2, Y3, . . . , Yn) = σ(Y1)η(Y2, Y3, . . . , Yn) − σ(Y2)η(Y1, Y3, . . . , Yn)

+ σ(Y3)η(Y1, Y2, Ŷ3, . . . , Yn) . . .

= −σ(Y2)η(Y1, Y3, . . . , Yn) + σ(Y1)η(Y2, Y3, . . . , Yn)

− σ(Y3)η(Y2, Y1, Ŷ3, . . . , Yn) . . .

= −ω(Y2, Y1, Y3, . . . , Yn).

One similarly proves that swapping any other pair of arguments introduces a minus-

sign. Therefore, ω is an n-form.

3. Since ω = ω( ∂
∂x1

, . . . , ∂
∂xn

)dx1 ∧ · · · ∧ dxn, we only have to prove the desired

identity for Yi =
∂
∂xi

. Since

σ =

n∑
i=1

σi dxi, with σi = σ(
∂

∂xi
),
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and

η =

n∑
i=1

ηi dx1 ∧ . . .∧ d̂xj ∧ . . .∧ dxn, with ηi = η(
∂

∂x1
, . . . ,

∂̂

∂xi
, . . . ,

∂

∂xn
),

we have, according to the de�nition of the exterior product,

σ∧ η =

n∑
i=1

(−1)i−1 σiηi dx1 ∧ . . .∧ dxn.

Therefore,

(σ∧ η)(
∂

∂x1
, . . . ,

∂

∂xn
) =

n∑
i=1

(−1)i−1 σiηi

=

n∑
i=1

(−1)i−1 σ(
∂

∂xi
)η(

∂

∂x1
, . . . ,

∂̂

∂xi
, . . . ,

∂

∂xn
)

= ω(
∂

∂x1
, . . . ,

∂

∂xn
).

Hence σ∧ η = ω.

Assignment 3.

1. Assumeω = dϕ. Use Stokes: 0 6=
∫
M f
∗ω =

∫
M f
∗dϕ =

∫
M d(f

∗ϕ) =
∫
∂M f

∗ϕ = 0,

since ∂M = ∅. This contradiction shows that ω is not exact.

2. Note that M = F−1(0), with F : R4 → R2 given by F(x1, x2, x3, x4) = (x21 + x
2
2 −

1, x23 + x
2
4 − 1). It is easy to see that dFp has matrix

(
2p1 2p2 2p3 2p4

)
, which

has rank 2 at points p ∈M. Hence TpM = kerdFp. Since v1 and v2 are independent,

and dFp(v1) = dFp(v2) = 0, the claim follows.

3. A straightforward computation shows that

(i∗ηk)p(vl) = (ηk)p(dip(vl)) = (ηk)p(vl) = δkl.

Hence (i∗(η1 ∧ η2))p(v1, v2) = ((i∗η1)p ∧ (i∗η2)p)(v1, v2) = 1, by the de�nition of

wedge product of two one-forms. Since for p ∈ M, the system {v1, v2} is a basis of

TpM, the claim follows.

4. From part 3 we conclude
∫
M i
∗(η1 ∧ η2) 6= 0. Now use part 1 to conclude that

η1 ∧ η2 is not exact on R4. (Remark: a completely di�erent approach consists of

proving that d(η1 ∧ η2) 6= 0, by a straightforward though tedious calculation.)

5. Let f1 : S1 → M be the given embedding, then the pull-back of i∗η1 under f1 is

the one-form on S1 given by f∗1i
∗η1 = −v du + udv. This one-form is nowhere zero

on S1, so
∫
S1 f
∗
1i
∗η1 6= 0. Use part 1 to conclude that i∗η1 is not exact. To prove that

i∗η2 is not exact use the embedding f2 : S1 → M given by f(u, v) = (1, 0, u, v) and

argue similarly.
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