Resit exam Analysis on Manifolds

June 30, 2017
This exam consists of three assignments. You get 10 points for free.
Assignment 1. $(10+10+10=30$ pt. $)$
We identify the space $M(2, \mathbb{R})$ of 2×2-matrices with \mathbb{R}^{4}, by associating the matrix

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)
$$

with the point $\left(x_{11}, x_{12}, x_{21}, x_{22}\right) \in \mathbb{R}^{4}$.

1. Show that the set

$$
\operatorname{SL}(2, \mathbb{R})=\{X \in M(2, \mathbb{R}) \mid \operatorname{det} X=1\}
$$

is a 3 -dimensional C^{∞}-submanifold of $M(2, \mathbb{R})$. Here $\operatorname{det} X$ denotes the determinant of X. (Hint: translate every statement in terms of subsets of \mathbb{R}^{4}.)
2. Show that the tangent space $T_{\mathrm{E}} \mathrm{SL}(2, \mathbb{R})$ at the identity matrix

$$
E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

is equal to $\{A \in M(2, \mathbb{R}) \mid \operatorname{Tr} A=0\}$. Here $\operatorname{Tr} A$ is the trace of the matrix A, i.e., the sum of the diagonal entries of A.
3. The map $f: S L(2, \mathbb{R}) \rightarrow \operatorname{SL}(2, \mathbb{R})$ is given by $f(X)=X^{-1}$. This map is differentiable (you don't have to prove this). Show that

$$
d_{E} f: T_{E} \operatorname{SL}(2, \mathbb{R}) \rightarrow T_{E} \operatorname{SL}(2, \mathbb{R})
$$

is given by $d_{E} f(A)=-A$.
Assignment 2. $(10+10+10=30 \mathrm{pt}$.)
Let X be a vector field on \mathbb{R}^{n}, f a smooth function on \mathbb{R}^{n}, and ω an n-form on \mathbb{R}^{n}. 1. Prove that $\mathrm{df} \wedge \mathrm{t}_{\mathrm{X}} \omega=X(f) \omega$.

Recall that $\tau_{x} \omega$ is the ($n-1$)-form given by $\iota_{x} \omega\left(X_{1}, \ldots, X_{n-1}\right)=\omega\left(X, X_{1}, \ldots, X_{n-1}\right)$, and that for a vector field $X=\sum_{i=1}^{n} a_{i} E_{i}$ (or, equivalently, $X=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}$) the function $X(f)$ is defined by $X(f)=\sum_{i=1}^{n} a_{i} \frac{\partial f}{\partial x_{i}}$.
2. Let σ be a 1 -form and let η be an $(n-1)$-form on \mathbb{R}^{n}. Define

$$
\omega: \underbrace{\mathcal{X}\left(\mathbb{R}^{n}\right) \times \cdots \times \mathcal{X}\left(\mathbb{R}^{n}\right)}_{n \text { times }} \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)
$$

by

$$
\omega\left(Y_{1}, \ldots, Y_{n}\right)=\sum_{i=1}^{n}(-1)^{i-1} \sigma\left(Y_{i}\right) \eta\left(Y_{1}, \ldots, \widehat{Y}_{i}, \ldots, Y_{n}\right) .
$$

Prove that ω is an n-form on \mathbb{R}^{n}.
3. In the notation of part 2 , prove that $\omega=\sigma \wedge \eta$.

Assignment 3. $(7+5+6+6+6=30$ pt. $)$
Note: the solution of this assignment is likely to be shorter than its statement.
Let the map $f: M \rightarrow \mathbb{R}^{n}$ be a C^{∞}-embedding of a compact orientable m-dimensional C^{∞}-manifold M without boundary, with $m \leq n$ (so, in particular, $f(M)$ is an m dimensional C^{∞}-submanifold of \mathbb{R}^{n}).

1. If ω is an m-form on \mathbb{R}^{n} with $\int_{M} f^{*} \omega \neq 0$, then ω is not exact on \mathbb{R}^{n}. Prove this.

Let M be the two-dimensional C^{∞}-submanifold of \mathbb{R}^{4} given by

$$
M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}^{2}+x_{2}^{2}=1, x_{3}^{2}+x_{4}^{2}=1\right\}
$$

and let $i: M \rightarrow \mathbb{R}^{4}$ be the inclusion map (the canonical embedding). You don't have to prove that M is a C^{∞}-submanifold. Let η_{1} and η_{2} be the one-forms on \mathbb{R}^{4} given by

$$
\eta_{1}=-x_{2} d x_{1}+x_{1} d x_{2} \quad \text { and } \quad \eta_{2}=-x_{4} d x_{3}+x_{3} d x_{4} .
$$

2. Let $p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \in M$. Prove that a basis of $T_{p} M$ is $\left\{v_{1}, v_{2}\right\}$, where

$$
v_{1}=-p_{2} e_{1}+p_{1} e_{2} \quad \text { and } \quad v_{2}=-p_{4} e_{3}+p_{3} e_{4} .
$$

As usual, e_{j} is the j-th standard basis vector of \mathbb{R}^{4}.
3. Prove that $i^{*}\left(\eta_{1} \wedge \eta_{2}\right)$ is a nowhere-zero two-form on M.
(Hint: prove that $i^{*}\left(\eta_{1} \wedge \eta_{2}\right)_{p}\left(v_{1}, v_{2}\right) \neq 0$, for $p \in M$ and $v_{1}, v_{2} \in T_{p} M$ as in part 2 of this assignment. Use that $d i_{p}: T_{p} M \rightarrow T_{p} \mathbb{R}^{4}$ is the inclusion map.)
4. Prove that the two-form $\eta_{1} \wedge \eta_{2}$ on \mathbb{R}^{4} is not exact.
(Hint: consider using part 1 and part 3.)
5. Prove that the one-forms $i^{*} \eta_{1}$ and $i^{*} \eta_{2}$ on M are not exact.
(Hint: let $\mathbb{S}_{1}=\left\{(u, v) \in \mathbb{R}^{2} \mid u^{2}+v^{2}=1\right\}$ be the unit circle in \mathbb{R}^{2}, and let $f_{1}: \mathbb{S}^{1} \rightarrow M$ be the embedding given by $f_{1}(u, v)=(u, v, 1,0)$. Apply part 1 of this exercise to show that $i^{*} \eta_{1}$ is not exact. Follow a similar approach to show that $i^{*} \eta_{2}$ is not exact.)

Solutions

Assignment 1.

1. Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be the C^{∞}-map defined by $F\left(x_{11}, x_{12}, x_{21}, x_{22}\right)=x_{11} x_{22}-x_{12} x_{21}$. Then $d_{X} F$ has matrix ($\left.\begin{array}{cccc}x_{22} & -x_{21} & -x_{12} & x_{11}\end{array}\right)$, which has maximal rank (namely, one) for $X \in \operatorname{SL}(2, \mathbb{R})$. Therefore, $\operatorname{SL}(2, \mathbb{R})$ is a 3-dimensional C^{∞}-submanifold of \mathbb{R}^{4}.
2. Use that $T_{E} S L(2, \mathbb{R})=$ ker $d_{E} F$, and that $X \in \operatorname{ker} d_{E} F$ iff $x_{11}+x_{22}=0$ iff $\operatorname{Tr} X=0$.
3. Let $A \in T_{E} S L(2, \mathbb{R})$, and let $X: \mathbb{R} \rightarrow S L(2, \mathbb{R})$ be a C^{∞}-curve with $X(0)=E$ and $X^{\prime}(0)=A$. Then $d_{E} f(A)=Y^{\prime}(0)$, where $Y(t)=f(X(t))=X(t)^{-1}$.

Since $X(t) \cdot Y(t)=E$, we see that $X^{\prime}(0) \cdot Y(0)+X(0) \cdot Y^{\prime}(0)=0$ (the zero matrix), so, using $X(0)=Y(0)=E$ we get $Y^{\prime}(0)=-A$.

Assignment 2. Let $X=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}$ and let $\omega=g d x_{1} \wedge \ldots \wedge d x_{n}$, then

$$
\mathfrak{l}_{x} \omega=g\left(\sum_{i=1}^{n}(-1)^{i-1} a_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots d x_{n}\right)
$$

Since $d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}$, we get

$$
\begin{aligned}
\mathrm{df} \wedge \mathrm{t}_{\mathrm{x}} \omega & =\mathrm{g}\left(\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j}\right) \wedge\left(\sum_{i=1}^{n}(-1)^{i-1} a_{i} d x_{1} \wedge \ldots \wedge \widehat{d x_{i}} \wedge \ldots \wedge d x_{n}\right) \\
& =g\left(\sum_{i=1}^{n}(-1)^{i-1} a_{i} \frac{\partial f}{\partial x_{i}} d x_{i} \wedge d x_{1} \wedge \ldots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}\right) \\
& =\left(\sum_{i=1}^{n} a_{i} \frac{\partial f}{\partial x_{i}}\right) g d x_{1} \wedge \ldots \wedge d x_{n} \\
& =X(f) \omega .
\end{aligned}
$$

2. The map ω is multilinear over $C^{\infty}\left(\mathbb{R}^{n}\right)$. To see that it is antisymmetric, let us swap Y_{1} and Y_{2}. Note that

$$
\begin{aligned}
\omega\left(Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}\right)= & \sigma\left(Y_{1}\right) \eta\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right)-\sigma\left(Y_{2}\right) \eta\left(Y_{1}, Y_{3}, \ldots, Y_{n}\right) \\
& +\sigma\left(Y_{3}\right) \eta\left(Y_{1}, Y_{2}, \widehat{Y}_{3}, \ldots, Y_{n}\right) \ldots \\
= & -\sigma\left(Y_{2}\right) \eta\left(Y_{1}, Y_{3}, \ldots, Y_{n}\right)+\sigma\left(Y_{1}\right) \eta\left(Y_{2}, Y_{3}, \ldots, Y_{n}\right) \\
& -\sigma\left(Y_{3}\right) \eta\left(Y_{2}, Y_{1}, \widehat{Y}_{3}, \ldots, Y_{n}\right) \ldots \\
= & -\omega\left(Y_{2}, Y_{1}, Y_{3}, \ldots, Y_{n}\right) .
\end{aligned}
$$

One similarly proves that swapping any other pair of arguments introduces a minussign. Therefore, ω is an n-form.
3. Since $\omega=\omega\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) d x_{1} \wedge \ldots \wedge d x_{n}$, we only have to prove the desired identity for $Y_{i}=\frac{\partial}{\partial x_{i}}$. Since

$$
\sigma=\sum_{i=1}^{n} \sigma_{i} d x_{i}, \text { with } \sigma_{i}=\sigma\left(\frac{\partial}{\partial x_{i}}\right)
$$

and

$$
\eta=\sum_{i=1}^{n} \eta_{i} d x_{1} \wedge \ldots \wedge \widehat{d x_{j}} \wedge \ldots \wedge d x_{n}, \text { with } \eta_{i}=\eta\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\widehat{\partial}}{\partial x_{i}}, \ldots, \frac{\partial}{\partial x_{n}}\right),
$$

we have, according to the definition of the exterior product,

$$
\sigma \wedge \eta=\sum_{i=1}^{n}(-1)^{i-1} \sigma_{i} \eta_{i} d x_{1} \wedge \ldots \wedge d x_{n}
$$

Therefore,

$$
\begin{aligned}
(\sigma \wedge \eta)\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) & =\sum_{i=1}^{n}(-1)^{i-1} \sigma_{i} \eta_{i} \\
& =\sum_{i=1}^{n}(-1)^{i-1} \sigma\left(\frac{\partial}{\partial x_{i}}\right) \eta\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\widehat{\partial}}{\partial x_{i}}, \ldots, \frac{\partial}{\partial x_{n}}\right) \\
& =\omega\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) .
\end{aligned}
$$

Hence $\sigma \wedge \eta=\omega$.

Assignment 3.

1. Assume $\omega=d \varphi$. Use Stokes: $0 \neq \int_{M} f^{*} \omega=\int_{M} f^{*} d \varphi=\int_{M} d\left(f^{*} \varphi\right)=\int_{\partial M} f^{*} \varphi=0$, since $\partial M=\emptyset$. This contradiction shows that ω is not exact.
2. Note that $M=F^{-1}(0)$, with $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ given by $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{2}+x_{2}^{2}-\right.$ $\left.1, x_{3}^{2}+x_{4}^{2}-1\right)$. It is easy to see that $d F_{p}$ has matrix $\left(\begin{array}{llll}2 p_{1} & 2 p_{2} & 2 p_{3} & 2 p_{4}\end{array}\right)$, which has rank 2 at points $p \in M$. Hence $T_{p} M=\operatorname{ker} d F_{p}$. Since v_{1} and v_{2} are independent, and $\mathrm{dF}_{\mathrm{p}}\left(v_{1}\right)=\mathrm{dF}_{\mathrm{p}}\left(v_{2}\right)=0$, the claim follows.
3. A straightforward computation shows that

$$
\left(i^{*} \eta_{k}\right)_{p}\left(v_{l}\right)=\left(\eta_{k}\right)_{p}\left(d i_{p}\left(v_{l}\right)\right)=\left(\eta_{k}\right)_{p}\left(v_{l}\right)=\delta_{k l} .
$$

Hence $\left(i^{*}\left(\eta_{1} \wedge \eta_{2}\right)\right)_{p}\left(v_{1}, v_{2}\right)=\left(\left(i^{*} \eta_{1}\right)_{p} \wedge\left(i^{*} \eta_{2}\right)_{p}\right)\left(v_{1}, v_{2}\right)=1$, by the definition of wedge product of two one-forms. Since for $p \in M$, the system $\left\{v_{1}, v_{2}\right\}$ is a basis of $T_{p} M$, the claim follows.
4. From part 3 we conclude $\int_{M} i^{*}\left(\eta_{1} \wedge \eta_{2}\right) \neq 0$. Now use part 1 to conclude that $\eta_{1} \wedge \eta_{2}$ is not exact on \mathbb{R}^{4}. (Remark: a completely different approach consists of proving that $d\left(\eta_{1} \wedge \eta_{2}\right) \neq 0$, by a straightforward though tedious calculation.)
5. Let $f_{1}: \mathbb{S}^{1} \rightarrow M$ be the given embedding, then the pull-back of $i^{*} \eta_{1}$ under f_{1} is the one-form on \mathbb{S}_{1} given by $f_{i}^{*} i^{*} \eta_{1}=-v d u+u d v$. This one-form is nowhere zero on \mathbb{S}^{1}, so $\int_{\mathbb{S}^{1}} f_{1}^{*} i^{*} \eta_{1} \neq 0$. Use part 1 to conclude that $i^{*} \eta_{1}$ is not exact. To prove that $i^{*} \eta_{2}$ is not exact use the embedding $f_{2}: \mathbb{S}^{1} \rightarrow M$ given by $f(u, v)=(1,0, u, v)$ and argue similarly.

